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FOREWORD 

This document is a final technical summary of the progress 

made by the Electrical Engineering Department of Auburn University 

in the final phase of Contrzct FQlS8-11116. This contract was granted 

to Auburn Research Foundation, Auburn, Alabama, October 21, 1963, by 

the George C. Marshall Space Flight Center, National Aeronautics and 

Space Administration, Huntsville, Alabama, and was modified 

November 21, 1964. 
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I 

SUMMARY 
3 o G i J  

The development of an approximate steady-state time response 

expression for an RC commutated network is given. The expression is 

used in investigating several modifications of a rate gyro blender 

which utilize RC commutated networks. The RC commutated networks 

were added to the rate gyro blender system to attain more canplete 

signal cancellation irrespective of the phase relation between the 

forward and aft input signals. Total cancellation is achieved by 

cancellation of the inphase and quadrature components separately. 

The responses of the modifications to various sinusoidal input 

signals containing quadrature components are compared experimentally. 

vii 
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This report is the 

NAS8-1111_. The object 

I. INTRODUCTION 

final technical report on Phase I1 of Contract 

ve of the work done under this phase of the 

contract was the investigation of the use of 3C commutated networks 

for the purpose of eliminating the quadrature component of the first 

bending mode signal in a rate gyro blender. 

The primary objective of this report is to present the mathematical 

studies which have been developed at Auburn University and delivered 

to NASA - Marshall Space Flight Center, the experimental results in 
connection with these studies, and the conclusions and recommendations 

resulting from the effort. Most of the material presented herein 

summarizes information contained in the previous monthly progress 

reports. 

Chapter I1 contains a brief description of the operation of 

a rate gyro blender, and in Chapter 111, a mathematical analysis of a 

certain type of RC commutated network is presented. 

various modifications of the rate gyro blender are investigated. 

Several of the modifications utilize RC commutated networks to improve 

input signal cancellation. Chapter V contains a mathematical analysis 

of a cascaded configuration of two RC commutated networks. 

recommendations are given in Chapter VI. 

In Chapter IV, 

Several 

1 
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1 11. RATE GYRO BLENDER OPERATION 

I 

1 
I 
I 
I 

I 

A rate gyro blender system was designed by Minniapolis-Honeywell 

Regulator Company and delivered to NASA - George C. Marshall Space 

riight Center, Huntsville, Alabama, under Contract NASS-5069. The 

system was designed for the purpose of eliminating the first bending 

mode signal from the Saturn V control system. 

-- 

Throughout this report, the phrase "bending mode" refers only 

It is assumed that the higher frequency to the first bending mode. 

components are attenuated by proper filtering. 

The configuration of the rate gyro blender is shown in Figure 1. 

The forward and aft input signals to the rate gyro blender are the 

outputs of two rate gyros, one located forward and the other aft of the 

first bending mode antinode of the space vehicle structure. The rate 

gyro signals contain undersirable bending mode signals as well as the 

desirable rigid body rate signals. 

signals from the two rate gyros are nearly opposite in phase and have 

different amplitudes, wbile the rigid body rate signals are in phase 

and equal in amplitude. 

The undersirable bending mode 

If the bending mode signals are assumed to be 180° out of phase, 

the attenuators, K and l-K, are adaptively adjusted such that the 

attenuated bending mode 

sum to zero. The rigid 

signals are equal in amplitude, and therefore 

body rate signals are assumed to be equal in 

2 
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Fixed and Variable 

Fixed and Variable 
A t  t enuat ors 

Fig. 1.-Rate Gyro Elender Configuration 
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amplitude and phase, and the sum of the attenuated signals is 

therefore  equal t o  the or iginal  r a t e  signal. 

The adaptive attenuation adjustment i s  obtained by comparing 

the  magnitudes of the f i r s t  bending mode signals a f t e r  the  K and 1-K 

attenuators.  

frm the  other systmn frequencies, the attenuator outputs are passed 

through bandpass f i l t e r s  with center frequencies fixed near the center 

of the f i r s t  bending mode frequency range. 

In order t o  separate the f i r s t  bending mode signals 

The comparison of the 

attenuated bending mode signals is accomplished by means of absolute 

value c i r c u i t s  which follow the bandpass f i l t e r s .  

r e s u l t s  from the subtraction of the absolute values of attenuated f i r s t  

bending mode signals, is integrated and used t o  adjust the magnitude of K. 

Because the forward and a f t  bending mode signals i n  r e a l i t y  are 

An e r ro r  signal, which 

not always 180' out of phase, the attenuated f i r s t  bending mode signals 

w i l l  not sum t o  zero, even though t h e i r  amplitudes a re  made equal by 

su i tab le  adjustment of K. 

In  order t o  make the blender fu l ly  effect ive,  addi t ional  means 

must be improvised t o  insure complete bending mode cancellation 

regardless of the phase relationship between the forward and a f t  input 

signals.  

and quadrature components separately. 

f i l t e r i n g  i n  the basic r a t e  gyro blender. 

consis ts  of s ingle  RC commutated networks a s  shown i n  Figure 2. The 

networks a c t  as bandpass f i l t e r s  tha t  pass only the component of the 

One method of accomplishing t h i s  is t o  operate on the inphase 

This can be real ized by addi t ional  

The addi t ional  f i l t e r i n g  

input s ignal  i n  phase w i t h  the commztation function. 
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111. RC COMMUTATED NE2WORK2 

I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
u 

A time domain expression for the output of an RC commutated 

network with a sinusoidal input is derived, first for the case 

wherein the frequency of the input slgaal and &hat of the ccrrmnutation 

signal are unequal, and then for the case wherein the frequencies are 

the same, An approximate Fourier series expansion of the output for 

the latter case in given, and then the sensitivity of the amplitude 

of the output fundamental to changes in the characteristics of the 

conmutated network is discussed. 

A. Introduction 

Since the rate gyro blender is effective only if the forward and 

aft first bending mode signals are exactly 180' out of phase, it is 

necessary to eliminate any existing quadrature components of the 

signal by other means. 

The RC conmutated network illustrated in Figure 2 is one means for 

sensing the quadrature component in the first bending mode signal. 

The network has the following properties: 

In the case where the input is of the form R sin (Lot + a) 

and the capacitor is commutated every x/o seconds, the output 

fundamental component is nearly in phase with the connmttatim signal; 

and furthermore, its amplitude is proportional to the amplitude of the 

input component in phase with the conmutation signal. 

5 
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I n  order t o  inves t iga te  p o s s i b i l i t i e s  fo r  u t i l i z a t i o n  of the 

RC commutated network, i t  is desirable t o  obtain a time expression 

f o r  i ts  response t o  a sinusoidal input during any commutation period. 

While a general t r ans fe r  function of the networkmight i n  some cases 

be desirable ,  such a transfer function, by the strictest def in i t ion ,  

239s not foi thfs network, 

B. Response of the RC Commutated Network 
To a Sinusoidal Input 

The RC conmutated network, as i l l u s t r a t e d  i n  Figure 2, cons is t s  

of a high gain amplifier w i t h  fixed input and feedback r e s i s t o r s  

and a commutated feedback capacitor. 

reversed, t he  output vol tage is a l s o  reversed, and thus a new i n i t i a l  

charge on the  capaci tor  must be considered following each conarmtation, 

Each time the  capaci tor  is 

I f  an input ei(t) of t h e  form 

ei(t)  = R s i n  (cut + @) (111- 1) 

is applied t o  the network, where R is the amplitude of the input ,  

the d i f f e r e n t i a l  equation describing the output of the  RC cammutated 

network between commutations is 

b s in  (cut -I-+), 

I 
I 
I 
1 
1 
I 
1 

(111- 2) 



. 

where 

8 

1 a = -  
RF ’ 

B 
RiC . 9 

b = -  

and eo(t) is the output voltage of the RC network. The solution of 

(111-2) is 

-at 
eo(t) = A e  + C1 sin(cot + e )  + C2 cos(u,t + e ) ,  

I 
I -  
1 
I 
I 
I 
I 
I 
1 
I 
i 
1 
I 
I 
I 
I 
B 
I 
I 

where 

- ab 
2 2 9  

I +u, 
c1 - 

and 

Equation (111-3) can be written more conveniently as 

(111- 3) 



. 

I 
where 

9 

eo(t)  = ~ e - ~ ~  + a s i n  at + B cos ut, 

= C, COS 4 - C sin @, - 2 

and 

p = C1 s i n  4 + C cos @. 2 

(111-4) 

T 
2 The capaci tor  is comrmtated every - seconds, (where T is  the 

period of the  square wave  conmutation function),  and there  is a new 

value of A, ( the coef f ic ien t  of the  t r ans i en t  term i n  (111-4)), t o  be 

determined a f t e r  each commutation. 

The output expression f o r  the RC comrmtated network can be 

derived f o r  several 

general  form during any future  commutation period. 

switching periods i n  order t o  determine its 

The f i r s t  connnrtation i s  assumed t o  occur a t  t = 0. I f  the 

vol tage across the capaci tor  j u s t  p r i o r  t o  the  f i r s t  conmutation i s  



. .  

10 

M v o l t s ,  then the  output voltage immediately a f t e r  the  f i r s t  

commutation is  -M; and, -M is  the i n i t i a l  condition t o  be considered 

i n  computing t h e  value of A from (111-4) during t h e  time 0 < t < - . 
Evaluating eo(0) 

T 
2 

4- from (111-4), and equating it t o  -M, y i e l d s  

A -M -p . (111-5) 

The value of A can be subs t i tu ted  i n t o  (111-4) t o  ob ta in  the  output 

expression f o r  c < t < -  o r  
T 
2’ 

- a t  eo(t)  = -(M + @)e + a  s i n  cot + #3 cos c o t  1 
(111-6) 

[u(t) - u ( t  - 31 
The u n i t  s t e p  function notation i n  (111-6) i s  used t o  denote t h e  

comuta t ion  period over which the  output expression is  va l id .  

The output voltage j u s t  p r i o r  t o  the second conmutation can be 

evaluated from (111-6), and the value  of A during the  second COZIHIPI- 

t a t i o n  period can be obtained by equating the  negative of t h i s  vo l tage  

t o  eo(T), obtained from (111-4). If the  new value of A i s  subs t i t u t ed  

i n t o  (111-4), an output expression f o r  5 < t < T r e s u l t s  or 

T 



. 

(III- 7) 

The value of A can be calculated fo r  T < t <- 3T 

as  f o r  the previous commutation periods. Then, 

i n  the  same manner 
2 

T 
T T 2  a- 

-(M + 8)  + 2 ( a  s i n  cu - + p cos w -)e c 2 2 

r 
I 

i- e o ( t >  = 

2(a s i n  wT + (3 cos coT)e 

. 
+ a s i n  co t  + p cos ut i- 
[ u ( t  - T) - u ( t  - 1. 

3T 

2 
By a s imi la r  procedure, the output fo r  - <  t < 2T i s  

aT - 2 ( a  s i n  CUT + B cos wT)e 
?m 

2 
3T + 2 ( a  s i n  w~ + B cos 

+ Q s i n  cot + p cos ut 1 

(III- 8 )  

(111-9) 

1 3T 
2 

[ u ( t  - -) - u ( t  - 2T) . 
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By the process of mathematical induction, it can be seen that 

the output expression for any period n 2 < t < (n-tl) 

is the number of consmutations minus one, can be represented by 

, where n 
2 2 

n 

2 2 
eo(t) = {(-1)l-@f+@)-? 7 (-l)k(a sin cuk- T + f3 cos 

k=l 

+ asin cot + B cos ut . 1 (111- 10) 

u(t - y ) - u(t - (R+l)$) . C T  1 
C. Approximate Steady-State Output Expression For Input 

And Comnutation Function Equal in Frequency 

The case wherein the input and commutation frequencies are equal 

can be analyzed as a special case of (111-10). 



. 
13 

I f ,  i n  (111-lo), w e  le t  the input frequency cu be equal t o  the 

frequency of the commutation function, or  cu = - , then (111-10) 

can  be rewri t ten 

2n 
T 

2) '1 7 
u ( t  - T)-  nT u(t- (n+l)- 

where n equals the number of commutations minus one. By the use 

of the  re la t ion ,  

T n T a (n+l )y 
ka; 1- e 

- - 
T 

1-e 2 
9 

% c e  
k = O  

(111-11) can be rewri t ten as 

+ a s i n  w t  + p cos w t  } - 

(111- 11) 

(I I I - I 2  ) 

(111- 13) 
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-a t  
I f  t becomes large enough so tha t  .+, ] e  

1 - c  .3 
can be neglected i n  the expansion of (111-13), then the resu l t ing  

steady-steady approximation of eo(t) is  

-a(t-n;;) T 

I* + a: s i n  cut + p cos cut L l  
i c I- e - 5  -1 T 

f n W e  eo( t j  = 5 (-I)  

Because the difference between the ac tua l  response and the 

T *@ a- ' 1 e-at ' approximate steady-state response is  

1 - e  2 

the  magnitude of a - 
t i m e  of the RC commutated network. 

can be used a s  a measure of the response -v 
As can be seen i n  (111-14), the steady-state response i s  

independent of the voltage M on the capacitor pr ior  t o  the f i r s t  

c o m t  a t ion. 

In  Figure 3, an experimentally determined s teady-state  response 

i s  compared with the derived response from (111-14) with a given 

s e t  of input conditions. 

approximate steady-state response'expression. 

The purpose of t h i s  comparison i s  t o  v e r i f y t k e  

D. Fourier Ser ies  Expansion of Steady-State Output Expression 

Since the approximate steady-state response given by (111-14) 

i s  f i n i t e ,  periodic,  s ing le  valued, and has a f i n i t e  number of f i n i t e  



I 

P-network Input 

F ig .  3 .-Steady-state Response of P-netuork 
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discontinuities in any period, it may be represented by a Fourier 

series expansion; or, 

Q 
The steady-stat 

symmetry. Therefore, 

where Bo, A d ,  and B 

(111- 15) 

are the trigonometric Fourier coefficients. 

response has no dc component and has half-wave 

it contains no even harmonics, and only the 

odd harmonic coefficients need be considered. These coefficients 

may be determined as follows: 

AQ = ‘f.e0(t) T sin wQt dt 
0 

B = T  e (t) cos Lult dt Q 0 

0 

(111- 16) 

(111- 17) 

By the substitution of eo(t) from (111-14) into (111-16) and (111-17), 

the Fourier coefficients are evaluated as: 

T 

+ G  
8f34e-q + 1) 

A 1  = 
2 2  T 

T(e’q - l)(a + CD ) 
(111- 18) 

if Q is an odd integer > 1 
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T -a- 
8pa(e 2 + 1) 

B, = + 6  'p (11 I- 19) 

T(e - l ) ( a  2 + o 2 
-aL 

T 

if ,l? is an odd integer > 1 . = e a ( d a T  + 1) 
% T 

T(eoa7 - 1)(a2 + j2u2) 

Rf 

R i  
1. Optimum Value of - 

Suppose the  input ei(t) is i n  phase with t h e  conarmtation funct ion,  

or @ = Oo; and,it  is desired that  R, (the amplitude of ei(t)) ,  be 

equal t o  -A1, and tha t  B1, (the quadrature component of the output), 

be made a s  s m a l l  as possible. 

From (111-19), i t  can be seen tha t  B, can be made a s  small a s  
2 I 

or CJith - Rf = - IT 
a ,  desired by reducing the magnitude of-a - 

-&r Ri 

A s  can be seen i n  (111-18), the magnitude of A1 a s  a-0 i s  

* - 
l i m  A = - 2 1 A R: A 
a- 0 

(111-21) 
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Then i f  it i s  desired tha t  A1 = -R, the  input and feedback 
2 
8 

Rf = - 5[ tat 1.23. r e s i s t o r s  must be adjusted such t h a t  - 
R i  

It should be noted t h a t  in  (111-Zl), the magnitude Ai i s  

insens i t ive  t o  change i n  w. However, i f  a = 0, the output of the 

commutated network would never reach steady-state. Thus, (111-20) . 

and (111-21) can only be regarded as approximations whose accuracy 

increases  as a = 1 deczeases in magnitude. 

Table I l ists  various values of A1 and B 
Rf 

as an example t o  1 

i l l u s t r a t e  the magnitude of the e r ro r s  involved i n  using approximations 

(111-20) and (111-21) f o r  a given s e t  of conditions. 

2. U s e  of RC Conmutated Network For Attenuating Low Frequency Inputs 

Another useful  property of the  RC conmutated network is t h a t  it 

can be used t o  a t tenuate  input s igna ls  which are lower i n  frequency 

than the commutating function. 

It can be seen i n  (111-10) t h a t  as o, the  input frequency, 

approaches zero, the steady-state dc response of the RC commutated network 

approaches zero, or 

l i m  e(t) = 0 

a-0 
0-0 

(111- 22) 



ei(t)  = 1 sin5.65t 

eo ( t )  = A1sin5.65t + B1~0~5.65t 

(fund.) 

1 a = -  
Rt-C 

19 

-L 

(fund.) 

B1 

0.06856 

0.052 89 

0.03686 

0.02056 

Table 1,-Computed Values cf A-,, and B 1  I l l u s t r a t i n g  Error 
Magnitudes i n  Approxmations (111-20) and ( 111-21) 
f o r  Various Values of a = 1/RfC 
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Therefore, (111-22) can be used as an approximation, for low 

frequency inputs. For example, consider the RC commutated network with 

Rf = 5 m  

Ri = 5 m  

c = 9.1 +f 

and the frequency of conrmutation 0.9 hz.. The steady-state response 

of this configuration was investigated experimentally for a sinu- 

soidal input with a peak-to-peak amplitude of 36 volts and frequency 

of 0.1 hz., and it was found that the output component at 0.1 hz. had 

a peak-to-peak amplitude of approximately 1.0 volt. This is an 

indication of the magnitude of error involved in the approximation 

given by (111-22). 

E. Conclusions 

An approximate steady-state output expression is derived for the 

RC commutated network with input and commutation frequencies equal. 
I 

The response time of the network is directly proportional to; = RfC, 

the product of the feedback capacitance and resistance. The steady- 

state output can then be expressed as a Fourier series containing only 

the odd harmonic terms. The amplitude of the fundamental becomes less 

sensitive to changes in LU as the magnitude of "a" is decreased, and 

the quadrature component of the fundamental can be made as small as 

desired by decreasing the value of "a". 

network can be used for attenuating inputs with frequencies much lower 

than the commutation frequency. 

Also, the RC commutated 



IV. USE OF RC COMMUTATED NETWORKS FOR EZIMINATING 
QUADRATURE BENDING IDDE SIGNAL 

Several schemes a re  investigated fo r  eliminating the quadrature 

components of the f i r s t  bending mode s ignals  i n  the rate gyro blender, 

and the effect iveness  of each scheme is discussed. 

A. Introduction 

Several modified blender configurations u t i l i z i n g  RC coIHmrtated 

networks w e r e  tes ted t o  determine t h e i r  effect iveness  i n  removing the 

quadrature components of the f i r s t  bending mode s ignals .  

The forward and a f t  f i r s t  bending mode signals were simulated by 

a signal generator operating at 0.9 hz., which i s  a t  the center  of the 

frequency range of the  f ixed bandpass f i l t e r s  i n  the rate gyro blender. 

A phase s h i f t i n g  c i r c u i t  was used t o  simulate 

of 165' o r  180' between the forward and a f t  f i r s t  bending mode signals. 

the phase differences 

The amplitudes used f o r  the simulated f i r s t  bending mode signals were 36 

v o l t s  and 18 vo l t s  peak-to-peak. 

I n  each test, the  blender modification under consideration was 

subjected t o  the  various phase and amplitude combinations, and the 

amplitude, Eo, of the  fundamental frequency i n  the  output w a s  recorded. 

A twin-T f i l t e r  with center  frequency a t  0.9 hz. w a s  used a t  the 

output t o  separate  the fundamental frequency from the  harmonics. 

21 
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Even harmonics are generated by the absolute value circuits, and 

the odd harmonics are generated by the RC commutated networks. 

The closed-loop time response of the system was investigated 

for each modification by recording the output of the integrator 

inmediately after the blender (with a 36 volt peak-to-peak signal on 

both channels) was placed in the "cagedii (operate) configuration. An 

effort was made to maintain, as nearly as possible, similar time re- 

sponses for each modification. In each test, the integrator input 

1 potentiometer R (used to adjust the gain) and the magnitude of a = - 
2 RfC 

of the RC commutated networks were adjusted such that the integrator 

output reached 63 percent of its final value in at least one second. 

Because "a" is finite, there is always a finite quadrature component on 

the output of each commutated network. 

The unmodified blender configuration was tested first in order to 

establish a basis of comparison for each of the modifications which follow. 

B. Unmodified Rate Gyro Blender 

The unmodified rate gyro blender was subjected to the previously 

described combinations of test inputs, and % of the integrator circuit 
was adjusted for the desired system time response. The test results 

appear in Figure 4. 
0 In theory, the output of the blender, with inputs 180 out of 

A phase, should be zero for all combinations of input amplitudes. 

dc integrator bias adjustment is provided for this purpose. However, 

it was necessary to readjust the bias each time the input amplitudes 
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were changed in  order t o  maintain zero output. 

a t t r i b u t e d  t o  the nonlinear cha rac t e r i s t i c s  of the sa turab le  reac tors  

used in  va r i ab le  a t tenuators .  

This problan i s  

For the  purpose of t h i s  and following tests, the  b ias  adjustment 

w a s  fixed. The va lue  w a s  obtained by minimizing the  blender outputs 

f o r  a i l  poss ib ie  combinations of forward and a f t  'I'put s igna l  m 2 l i -  

tudes. 

C. Modification I 

The c i r c u i t  of modification I is i l l u s t r a t e d  i n  Figure 5. This 

modif icat ion uses a square-wave demodulator i n  place of the absolute  

va lue  c i r c u i t s .  

mul t ip l ied  by a square-wave function, and the r e su l t i ng  signal is  

applied t o  an in t eg ra to r  external t o  the blender breadboard (the bread- 

The outputs of the  bandpass f i l t e r s  are sumed and 

board in t eg ra to r  is no t  accessible).  

Modification I w a s  t es ted  as a poss ib le  alternative t o  the un- 

modified blender configuration. 

1. Theory of Operation 

The P-demodulation function used t o  operate the SPDT switch of 

the  P-demodulator i s  a square wave equal i n  frequency t o  that of the  

bending mode signal. 

adjusted f o r  inputs  180° out  of phase such t h a t  the  pos i t i on  of the 

SPDT switch changes each time the  P-demodulator input passes th ru  zero. 

I f  the  input is  pos i t i ve ,  the  output i s  equal t o  the input;  but ,  i f  the 

input i s  negative,  the output i s  the  negat ive of the input. Therefore, 

The phase of the P-demodulation funct ion is  
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f o r  inputs 180 out of phase, the P-demodulator dc output i s  propor- 

t i ona l  t o  the absolute value of the sum of the forward and a f t  

at tenuated signals.  

The in tegra tor  configuration used in  modification I has the same 

function as the integrator  c i r cu i t  of the  unmodified blender. 

2. Results 

The test da ta  and time response from the test of modification I 

appear i n  Figure 5. 

tes t ing  of the unmodified blender Configuration. 

The re su l t s  are very similar t o  those obtained in  

Again, it w a s  impossible t o  find one integrator  bias  s e t t i ng  which 

would zero the  blender output f o r  a l l  signal combinations tha t  w e r e  180 

out of phase. 

0 

D. Modification I1 

The c i r c u i t  configuration of modification I1 i s  i l l u s t r a t e d  in  

Figure 6. 

The P-networks (see Figure 2) are ccmmutated by a square-wave 

commutation signal a t  the frequency of the f i r s t  bending mode. The 

Q-networks (see Figure 2) a re  commutated by a square w a v e  camnutation 

function in  quadrature with the P conmutation signal.  It is  not  

necessary f o r  the P and Q commutation functions t o  have any pa r t i cu la r  

phase relat ionship t o  the f i r s t  bending mode signal, but t h e i r  frequency 

must be exactly equal t o  the f i r s t  bending mode frequency. 

The P commutation function used f o r  tes t ing  purposes w a s  i n  phase 

with the  forward f i r s t  bending mode signal.  
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1. Theory of Operation 

The fundamental frequency output amplitudes of the P-networks 

are proportional to the amplitudes of the attenuated input components 

that are in phase with the P commutation function; and, they are nearly 

independent of the quadrature input amplitudes, assuming that a = - 
is small. Therefore, the htegrator 

output increases or decreases until the amplitudes of the attenuated 

1 
RfC 

This can -be seen from (Ii i-20).  

components of the forward and aft signals which are in phase with the 

P conarmtation function are equal. 
2 . As shown in The Q-networks are adjusted such that - = - Yt Rf 

Ri 8 

Chapter 111, Section E), the fundamental output components are equal in . 

amplitude and opposite in phase to the quadrature components of the 

attenuated forward and aft input signals. Then, if their outputs are 

sunmed positively with the forward and aft attenuated signals, as 

shown in Figure 6 ,  the quadrature components of the blender output 

are cancelled. 

2. Results 

The test data and the time response for the circuit of modification 11 

are given in Figure 6 ,  and values of the commutated network components 

required for the given time response are given in the test configuration. 

One source of error between the test results and theoretical results 

I I 
I 

I 

is the assumption concerning the magnitude of a = - l . In this 
RfC ~ 

configuration "a" cannot be made arbitrarily small because of the I 

required time response of the integrator output signal. 
~ 
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E. Modification I11 

The c i r c u i t  configuration of modification I11 is i l l u s t r a t e d  i n  

Figure 7. 

I n  t h i s  modification, the bandpass f i l t e r s  are replaced with P- 

networks, and a Q-network is u t i l i zed  i n  order t o  remove the quadrature 

emponent of t h s  rats gyro blender output at the  f i r s t  bending mode 

frequency. 

1. Theory of Operation 

The operation of modification I11 is similar t o  t h a t  of modifica- 

t i o n  11. 

As w a s  shown i n  Chapter 111, the P-network at tenuates  a l l  input 

components whose frequencies are much less than the commutation 

frequency. The f i r s t  bending mode frequency t o  be considered (which 

i s  used as the P-network cornmutation function),  is approximately t en  

times the frequency of the rigid body r a t e  signal.  Then, i f  i t  is  

assumed that there  are no components i n  the forward and a f t  input 

signals with frequencies higher than the f i r s t  bending mode signal, the  

P-network can be used t o  perform the same function as the bandpass 

f i l t e r ;  that is, it can be used t o  a t tenuate  the  cont ro l  signal and 

pass the  f i r s t  bending mode signal. An addi t iona l  property of the  

P-network is t h a t  only the component of the  f i r s t  bending mode 

signal t h a t  i s  i n  phase w i t h  the P commutation function is  passed. .* - 8 . Then, as shown The Q-network i s  adjusted such tha t  - - - R f 
R i  

i n  Chapter 111, Section D, i t s  fundamental output component i s  
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approximately equal i n  amplitude and opposite i n  phase t o  the 

quadrature f i r s t  bending mode component of the blender output. 

Q-network output, i f  slmaned with the blender output, cancels the first 

bending mode quadrature s ignal .  

Q-networks are given in Figure 7. 

The 

The component values of the P and 

2. Results 

The test da ta  and the time response of modification I11 appear 

i n  Figure 7. 

A s ign i f i can t  improvement over the unmodified rate gyro blender 

configuration w a s  rea l ized  w i t h  modification 111, although a small 

component of the  f i r s t  bendingmode signal i n  phase with the P 

conmutation function s t i l l  pers is ted i n  the  output of t he  blender. 

This component is, i n  part, a r e su l t  of the  Q-network generating a 

s m a l l  component i n  quadrature with the Q commutation function. 

F. Modification IV 

The c i r c u i t  configuration of modification IV i s  i l l u s t r a t e d  i n  

Figure 8. 

Modifications 111 and I V  are the same except that, i n  modification 

I V ,  a P-network is  cascaded with the Q-network on the output of the  

rate gyro blender. The purposes of the addi t iona l  P-network are t o  

remove the  inphase component of the f i r s t  bending mode s igna l  which 

i s  not  eliminated by the rate gyro blender, and t o  remove the inphase 

component generated by the  Q-network. 
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1. Theory of Operation 

The operation of modification IV is  basical ly  the same as tha t  of 

modification 111. 

The P commutation function is  i n  phase wi th - the  forward f i r s t  

bending mode s igna l ,  and the Q commutation function is  i n  quadrature 

with the P function. The addi t ional  P-network is adjusted such t h a t  
2 - -  R f  - 2 . Then, i f  the output of the  P-network is  swmed with the 

Ri 8 
outputs of the blender and the  Q-network, the inphase component of 

the blender output a t  the f i r s t  bending mode frequency should be 

cancelled . 
2. Results 

The test data  and the  time response of modification I V  appear 

i n  Figure 8. 

As can be seen from t h e  t e s t  data ,  the addi t ional  cascaded P- 

network g rea t ly  improves t h e  operation of the rate gyro blender. 

configuration has the added advantage of providing two methods f o r  

eliminating the  inphase components of the f i r s t  bending mode s ignals :  

the  var iab le  a t tenuators ,  and the cascaded P-network. 

This 

G. Conclusions 

The following paragraphs br ie f ly  summarized the conclusions of 

Chpater IV. 

Each of the  modified rate gyro blender configurations investigated 

i n  t h i s  chapter require  t h a t  a conarmtation function be avai lable  with 

a frequency iden t i ca l  t o  t h a t  of the  f i r s t  bending mode signal. I n  
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addition, it is necessary that the P and Q commutation functions have 

a quadrature phase relationship. The four modifications investigated 

are based upon these assumptions. 

The unmodified configuration is incapable of removing any quadrature 

components in the first bending mode signals. 

The circuit of modification I yields cornparable results to those 

of the unmodified configuration, which indicates that the P-demodulator 

could be used to replace the absolute value circuits. 

Modification 11, which utilizes P and Q-networks, eliminates the 

quadrature components of the first bending mode signal, but adds an 

additional inphase component, because the magnitude of a = - is not 
zero. 

response time and the residual bending mode signal in the output, 

Rfc 
The choice for the value of a =-  involves a compromise between 

R f c  

In modifications I11 and IV, the bandpass filters are replaced by 

P-networks. 

components of the first bending mode signals in phase with the P 

The P-networks are used for the purpose of isolating the 

commutation function. In addition, the P-networks attenuate the 

low frequency control signal. 

Modification IV provided much better first bending mode signal 

cancellation than any of the other modifications, As a result of the 

cascaded P and Q-networks on the output of the blender configuration, 

the undesirable inphase signal generated by the Q-network is eliminated. 

This also helps to reduce error caused by undesirable disturbances 

of the integrator output. 



V. C A S O E D  P AND Q-NFXWORK CONFIGURATION 

This chapter invest igates  the case wherein a P and a Q-network 

are cascaded, as in modification I V  of Chapter IV, 

is obtained fo r  the steady-state fundamental output component 

assuming an input of  the same frequency as tha t  of the commutation 

signals . 

A time expression 

A. Introduction 

I n  the inves t iga t ion  of modification I V Y  a question arose as t o  

what port ion of the steady-state fundamental response of t he  P-network 

results from t he  harmonic content of the  Q-network output. lherefore ,  

an ana ly t i ca l  study of a cascaded P and Q-network configuration w a s  

under taken , 

The notat ion used i n  the analysis  of the  cascaded configuration 

is  given i n  Figure 9. 

t o  R s i n  cot ,  a sinusoid with a rb i t r a ry  amplitude R and with frequency 

equal t o  t h a t  of t he  commutation function, 

The form of the  input function e(t)  i s  restricted 

B, Derivation of Steady-State e,(t) 

As  s h a m  i n  Chapter 111, Section D, an approximate steady-state 

expression f o r  e 2 ( t )  can be obtained i n  the form of a Fourier series. 

The series cons is t s  of the fundamental term plus  higher odd harmonics. 

A t  t h i s  point ,  i t  i s  convenient t o  make the  assumption t h a t  the 

first conarmtation of  the  P-network occurs a t  t = 0, Therefore, the 

assumed input ,  R sin c u t ,  is i n  phase with the  P commutation function. 

35 
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As i n  the case of modification IV, the  value of A the coef f ic ien t  
1’ 

of the inphase fundamental term of the Fourier expansion of e (t), i s  
1 
Then, made equal t o  -R. This is  through proper adjustment of - Rf 

i 
R 

it can be seen from Figure 9, and the Fourier expansion of el(t) in 

(111-15), that an approximate steady-state expression fo r  e2(t) can 

be written as follows: 

1 

e,(t) = 1 AZn-1 sin (wn-1)ot + >, ~ 2 n - 1  cos (2n-l)wt, (V-1) 
n=al l  c. no.>l n=al l  c. no& 

where A2n,l and B2n-l, the Fourier coeff ic ients ,  are as given in  

(111-18) a d  (111-19) . 
Equation (V-1) is a steady-state approximation of e (t), which 2 

contains an i n f i n i t e  number of odd harmonic terms. This equation can 

be used f o r  determining an approximate steady-state response of the 

cascaded Q-network. F i r s t  the Q-network response t o  a s ingle  harmonic 

term is determined. 

the  Q-network, the t o t a l  Q-network output i s  expressed as the sum of 

the responses resu l t ing  from each harmonic term i n  (V-1). 

Then, by applying the pr inciple  of superposition t o  

C. Response of Q-network to a Harmonic Input Term 

Each of the harmonic tenus i n  (V-1) can be wr i t ten  i n  generalized 

form as 

e(t)  = R s i n  (2n-1) ut + 4n , n 

where n i s  a counting number used t o  specify the amplitude R 

of the harmonic. 

n 

The phase angle an can be adjusted s o  tha t  (V-2) 
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can represent the s ine  terms, (an = O o ) ,  or the cosine terms, 

(an = 90’) , appearing i n  (v-1). 

Through a procedure s i m i l a r  t o  t h a t  outl ined i n  Chapter 111, 

the form of the output expression of the  Q-network can be determined 

f o r  any commutation period. The desired expression i s  

-at e3(t)  = A e  + (r: sin(2n-1) ut  + B cos(2n-1) ut ,  
n n 

where 

(v- 3) 

1 a = -  
RfC ’ 

and 

The Q-network i s  cammutated every do seconds, and the conarmtations 

of the  P and Q networks a re  separated by x / h  seconds. 

It must be assumed t h a t  su f f i c i en t  t i m e  a f t e r  t = 0 has passed 

f o r  the approximation of (V-1) t o  be valid.  After the assumed elapsed 
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t i m e ,  we apply the  generalized steady-state harmonic input of (V-2) 

t o  the  input of the Q-network i n  order t o  determine i t s  output. The 

elapsed t i m e  i s  defined as kT, (where k is a counting number and T 

i s  the  period of the commutation function). 

make the  change of var iab le  

To simplify the analysis 

t '  = t - kT. (v- 4) 

Then, the components of e2 ( t ' )  a r e  i n  phase with the corresponding 

terms of e2(t) ,  and the f i rs t  conmutation of the Q-network occurs a t  

I 

I 

t '  = n / h  seconds. I 

Assume a Q-network output, Mn v o l t s ,  j u s t  p r io r  t o  the f i r s t  

conmutation. Then, the analysis proceeds as i n  Chapter 111, Section B; 

t h a t  is ,  the value of A, the coeff ic ient  of the t rans ien t  term i n  

(V-3), is  evaluated during each conmutation period of t h e  Q-network. 

I 

I 

The value of A between the f i r s t  and second conarmtations is determined 

by equating -% t o  the e3(x/2u) from (V-3), or 

x 
n-1) e % A = (-y1 - an(-l) 

Therefore, the  response of the Q-network resu l t ing  from the generalized 

harmonic input during the  f i r s t  commutation period is  
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+ pn cos(2n-1) ut' . 1 
35r 1 A 

u(tt-D - u(t'-2w, * [ 
Tne unit-step notation is used in (V-6) to denote the time interval 

over which the output expression is valid. 

The foregoing procedure of determining the initial output 

voltage immediately following each cmtation, and of equating 

this voltage to e3(tl), evaluated from (V-3), can be continued for any 

period 

commutations minus one). 

22 + 2 < t' < (mi-1) 2 + J[ (where m is the number of 
C O h  0 2w, 

It can be s h m  that the output expression due to the generalized 

' ' is mr n harmonic input for any period - + - < t' < (mtl) - + - a 2 0  w 2 c u  

+ sin(2n-1) ut' + 13, cos(2n-1) ut' 07-71 

- u) - a) - u(t' - (mt-1) ;; - 1  - z) [u(t * = S I  . 

The series in (V-7) can be written in closed form by'the use of 

(111-12). Therefore, (V-7) becomes 



+ an sin(2n-1) cot '  + P n  cos(2n-1) cot '  . } 
YC 

- a ( t ' - z )  e 

- I  m 
u ( t '  - - % - u ( t '  - (mtl) ;;; -. E) . [ 

1 

(V-8) 

I f  m, the  number of Q-network commutations minus one, becomes 

very large, the Q-network response t o  the generalized harmonic input 

term can be approximated by 

+ pn cos(2n-1) c o t '  . 
YC 

I 
[u(t' - w m - k) - u ( t '  - (mtl) ;;; - k)] , 

07-91 

where 

Equation (V-9) is an approximate steady-state expression fo r  the 

ac tua l  Q-network response resul t ing from the generalized harmonic 

input,  R, sin((2n-1) cot' + Qn). 

approximate square wave with frequency equal t o  the conmutation 

function. The remaining terms are  components a t  the frequency of the 

harmonic under consideration. 

The f i r s t  term i n  (V-9) i s  an 
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I). Steady-State Approximation of e?( t ' )  
~ 

The r e s u l t  of (V-9) can be extended t o  determine the t o t a l  

s teady-state  response of the Q-network t o  the input described by 

(V- l ) ,  s ince each term of (V-1) can be expressed-in the form of the 

generalized harmonic input of (V- 2). 
Y-l Consider the f i r s t  s e r i e s ,  L, A2n-l sin(2n-1) u t ' ,  of e2( t ' )  

n=al l  c, no,>l 
obtained from (V-1). The Q-network steady-state response resu l t ing  

f rom t h i s  series of input terms can be derived from (V-9) by l e t t i n g  

R, = Azn-1 and Qn = 0. 

second series i n  e2( t ' ) ,  

le t t ing = 

The response resu l t ing  from the terms of the  

Bzn-1 cos(2n-1) ut ' ,  can be derived by c n=all  c. no. 
and an = 90° i n  (V-9). B2n- 1 

I f  the  foregoing procedure is  used, the resu l t ing  t o t a l  steady- 

state approximation of e,(t') due t o  the  steady-state input e2(t ' )  is  

e3(t ') = ( 1 {(-l)m A2n-l (-l)n-l a0sin(2n-1) c u t '  
n=al l  c. no.>l 

I) + Bo cos(2n-1) ut '  

+ B2n-l [ago sin(2n-1) ut '  + B 90 cos(2n-1) cut']}). 

Yr 
u( t '  - y m -  - 20) - u ( t '  - (el) Yr - - &I] Y [ (v- 10) 

where 
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and 

= B ” I  f390 an = goo. 

Equation (V-10) is an approximate steady-state expression for 

e,(t’), the response of the Q-network resulting frm the input described 

by (V-1). It contains an infinite number of odd harmonic terms plus 

a fundamental frequency component. This component consists of the 

sum of the contributions produced by each of the tenns of (V-1). 

E. Evaluation of the Coefficients of the Fundamental 
Terms in the Fourier Series Expression for eg(t’) 

The approximate steady-state expression for e3(t’) given by 

(V-10) can be expressed as a Fourier series in trigonometric form. 

The coefficients of the fundamental terms are 
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(v- 11) 

= 2 1 e (t') cos ut' d t ' ,  B'l T 3 

where t h e  primes on A1 and B1 a r e  used t o  avoid confusion wi th  A1  

and B i n  t h e  Fourier series of e l ( t ) .  1 

The in t eg ra t ion  i n  (IT-11) r e s u l t s  i n  

(V- 12) 

- ax 

- ax - 
n=a l l  c. no. T(e - l)(a2 + w2) 

+ B1 ' 

and 

no. >1 

- an - 
8 B  (-l)n-l ago w(e  w +1) 

2n- 1 

C. 
r<e-%!i -1) (a2 + 02) n=a 4 1 

(V- 13) 

no. 
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As can be seen in (V-12) and (V-13), the individual terms 

of All and B'1 resemble B1 and A1 in form. 

The coefficients of the harmonic terms of e3(t') can be derived 

in a similar manner if necessary. 

the fundamental coefficients in this case. 

However, we are interested only in 

F. Evaluation of the Coefficients of the Fundamental Terms In 1 
~ 

As in the case of modification IV, the value of - Rf is adjusted 
Ri 

to approximately 1.23. 

B 

junction, 

ky Aft1 and B"1, are 

Then the component of B' resulting from the 
1 

input term at the Q-network is cancelled in the output suuuning 1 
and the fundamental coefficients of eo(t'), which will be denoted 

A"1 = At1 

and (V- 14) 

B"l = B'l + B1 . 

Furthermore, the fundamental frequency term of eo(t') can be expressed 

as follows: 

eo(t') = A'I1 sin ut' + BII1 COS ut' . 
(fund. ) 

(V- 15) 
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As can.be seen i n  (V-12), (V-13) , and (V-14) , the expressions 

fo r  All1 and B" contain several i n f i n i t e  series. Therefore, the 

exact computation of A", and B" 

can be wr i t ten  i n  closed form. However, these expressions answer 

the question of what portion of A", and B", is contributed by each 

1 
i s  not possible unless the series - 1 

of the harmodc terms of 

The expressions fo r  

i n i t i a l  Q-network output 

L I 

e p 1 .  

A"1 and B'I1 a re  independent of M , the 
n 

voltage j u s t  p r io r  t o  the f i r s t  commutation. 

Therefore, the steady-state expression fo r  e o ( t ' )  is  not dependent 

upon the t i m e  a t  which e 2 ( t 1 )  i s  applied t o  the Q-network. 

G . C onc lus  ions 

The steady-state response of the P-network contains a fundamental 

frequency term plus an in f in i t e  number of odd harmonic terms. Each 

of these harmonic terms, when applied t o  the Q-network, generates a 

Q-network steady-state response term a t  the fundamental frequency. 

I f  the assumption i s  made that  the pr inciple  of superposition applies 

t o  the Q-network, the Q-network response a t  the fundamental frequency 

i s  the sum of the contributions of the individual input components. The 

steady-state Q-network response i s  independent of  the i n i t i a l  output 

voltage a t  the f i r s t  commutation ins tan t ,  and the derived Q-network 

steady-state response can be used t o  determine the fundamental f re-  

quency component of the cascaded conftguration output. 
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IV. RECOMMENDATIONS 

The derived P-network steady-state output expression should 

be investigated further to determine a Fourier series representation 

in the case wherein the input atid cmiiiiiitation freqiieacies are different, 

The frequency response of the P-network might then be determined 

analytically. 

A l s o ,  the use of multiple capacitor RC commutated networks 

should be investigated in the various blender configurations. The 

amplitudes of the undesirable output harmonics of the RC commutated 

networks could be reduced in this way. 

The cascaded P and Q-network configuration with multiple commutated 

capacitors might be investigated as an alternate to the rate gyro 

blender. 
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